Différentielle du déterminant

Proposition — $\forall X, H \in \mathcal{M}_n(\mathbb{C})$, $D \det_X[H] = Tr({}^tCom(X)H)$.

DÉMONSTRATION

Comme det est de classe \mathcal{C}^1 sur $\mathcal{M}_n(\mathbb{C})$, il suffit de calculer ses dérivées partielles selon un vecteur quelconque pour connaître sa différentielle.

Soit $H \in \mathcal{M}_n(\mathbb{C})$. Soit $t \in \mathbb{R}$.

On note
$$\lambda_i$$
, $1 \leqslant i \leqslant n$ les valeurs propres de H .
$$\det(I_n + tH) = \prod_{i=1}^n (1 + \lambda_i t) = 1 + t \sum_{i=1}^n \lambda_i + o(t) = \det(I_n) + t \cdot \operatorname{Tr}(H) + o(t).$$
 D'où $\frac{\partial \det}{\partial H}(I_n) = \operatorname{Tr}(H)$.

Ainsi

$$\begin{aligned} \forall H \in \mathcal{M}_n\left(\mathbb{C}\right), \ D \mathrm{det}_{I_n}[H] &= \sum_{i=1}^n \sum_{j=1}^n \frac{\partial \det}{\partial E_{i,j}}(I_n) \ h_{i,j} = \sum_{i=1}^n \sum_{j=1}^n \mathrm{Tr}\left(E_{i,j}\right) \ h_{i,j} \\ &= \sum_{i=1}^n h_{i,i} = \mathrm{Tr}\left(H\right) \end{aligned}$$

Soit $X \in GL_n(\mathbb{C})$. Soit $H \in \mathcal{M}_n(\mathbb{C})$.

$$\det(X + H) = \det(X) \det(I_n + X^{-1}H)$$

$$= \det(X) \left[\det(I_n) + D \det_{I_n}(X^{-1}H) + o\left(\| H \| \right) \right]$$

$$= \det(X) \left[1 + \operatorname{Tr}\left(X^{-1}H\right) + o\left(\| H \| \right) \right]$$

$$= \det(X) + \operatorname{Tr}\left({}^t \operatorname{Com}\left(X\right) H \right) + o\left(\| H \| \right)$$

Donc $D \det_X [H] = \operatorname{Tr} ({}^t \operatorname{Com} (X) H).$

Soit $X \in \mathcal{M}_n(\mathbb{C})$.

X est trigonalisable, c'est-à-dire qu'il existe $P \in GL_n(\mathbb{C})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathcal{M}_n(\mathbb{C})$ diagonale telles que

$$X = PDP^{-1}.$$

Pour tout $k \in \mathbb{N}^*$, on pose

$$X_k = P\left(D + \frac{1}{k}I_n\right)P^{-1}.$$

Alors $\forall k \in \mathbb{N}^*, \ \det(X_k) = \prod_{i=1}^n \left(\lambda_i + \frac{1}{k}\right) \neq 0$ à partir d'un certain $k_0 \in \mathbb{N}^*$.

$$\operatorname{Or} \forall k \geqslant k_0, \ \left\| \left\| X_k - X \right\| \right\| \leqslant \left\| \left\| P \right\| \cdot \frac{1}{k} \cdot \left\| \left| P^{-1} \right\| \right| \xrightarrow[+\infty]{} 0.$$

Donc $(X_k)_{k\geqslant k_0}$ est une suite de $\mathrm{GL}_n\left(\mathbb{C}\right)$ convergeant vers X.

 $\mathrm{GL}_n\left(\mathbb{C}\right)$ est dense dans $\mathcal{M}_n\left(\mathbb{C}\right)$.

Comme $\forall X \in GL_n(\mathbb{C})$, $Ddet_X[H] = Tr({}^tCom(X)H)$ et det est de classe \mathcal{C}^1 , par continuité de la trace et de la comatrice, on peut prolonger la formule sur tout $\mathcal{M}_n(\mathbb{C})$.

20-sided dice 2 2020-2021